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In iron dominated magnets the field homogeneity inside the aperture is influenced by the magnetic behaviuor law, expressed via
the magnetic reluctivity, of the yoke. In practice this law is uncertain due to manufacturing imperfections. In this paper the uncertain
magnetic reluctivity is modeled as a random field and it is discretized by using the truncated Karhunen-Loève expansion (KLE).
Among all other expansions the KLE yields a minimal truncation error in the mean square sense. The suggested stochastic model is
used to study the statistics of the individual multipole coefficients, that heavily influence the beam dynamics, in a combined function
magnet.
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I. INTRODUCTION

Combined function magnets are used in particle accelerators,
as at the Gesellschaft für Schwerionenforschung (GSI) in
Darmstadt, Germany, to control both horizontal and vertical
deflection of charged particles. The field homogeneity, or
the field quality, inside the aperture is an important design
requirement during the R&D phase and it is influenced by
both, the superconducting coils and the magnetic yoke. The
field quality is described by a set of Fourier coefficients known
as field harmonics or multipole coefficients. These coefficients
are used to expand the radial component of the magnetic flux
density at a given reference radius inside the aperture.

Numerical simulations are required to determine the field
quality. The magnetic behaviour law enters as an input param-
eter in those simulations. In practice this law is uncertain due
to the imperfection of the manufacturing process. In order to
obtain reliable simulation results the uncertainties in this law
have to be taken into account. In particular it is impotant to
quantify the impact of the uncertain material law on the higher
multipole coefficients that are known to deteriorate the field
quality. The uncertain material properties should be modeled
as random fields and for the purpose of numerical simulation
those random fields must be discretized, i.e., represented via
a finite number of random variables. For computationally
efficient simulations it is required that the number of random
variables is as small as possible. In this context we propose to
use the truncated Karhunen-Loève expansion (KLE). When the
KLE is truncated after M terms the error is smaller compared
to any other M−term expansion in the mean square sense [1].

In order to use the KLE one needs to know the covariance
function of the random field that is deduced from measurement
data. So far the KLE has been applied for the stochastic
modeling of a nonlinear, homogeneous and isotropic magnetic
materials in [2] and the covariance function has been deduced
from actual measurements that are already presented in [3]. The
impact of uncertainties in nonlinear magnetic materials on the
field quality has been studied in [4] with the Brauer model.
The KLE has been used for the stochastic modeling of spatial
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Fig. 1: 2D cross section of a combined function magnet

uncertainties in the magnetic reluctivity in [5]. In contrast to the
previous work in this paper the impact of spatial uncertainties
in the magnetic reluctivity on the field quality are considered.
For simplicity the uncertainties in the nonlinear law are not
taken into account. The combination of both will part of a
future work.

II. GOVERNING EQUATIONS

The 2D cross section of the combined function magnet is
shown in Fig. (1). The air, coil and the magnetic yoke domains
are denoted as De, Dj and Dc, respectively. The air domain
consists of the inner part Din

e and the outer part Dout
e , i.e.,

De = D
out
e ∪D

in
e . The p-th coil domain is denoted as Djp =

D
(+)

jp ∪ D
(−)
jp where p ∈ {1, ..., 4}. The total computational

domain is D = De ∪ Dj ∪ Dc and its boundary is denoted
as ∂D. The magnetic reluctivity and the current density are
defined as follows:

ν(~x, θ) =


νe in De,
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νc(~x, θ) in Dc,

Jzp =
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(1)



where Ntp is number of turns, Sp is the cross sectional area
of the p-th coil, Ip is the current and θ is an outcome of a
random event. The governing stochastic magnetostatic partial
differential equation is given as

−∇ · (ν(~x, θ)∇Az(~x, θ)) = Jz(~x) in D,

Az(~x, θ) = 0 on ∂D,
(2)

where Az is the z-component of the magnetic vector potential.
The vector of spatial coordinates is given as: ~x = (x, y) ∈
R2. Equation (2) is solved by using the finite element method
(FEM) with the inhouse code Niobe.

III. KARHUNEN-LOÈVE EXPANSION

The magnetic reluctivity is expressed via a finite number of
random variables by the truncated KLE [1] as follows:

νc(~x, ~ξ(θ)) ≈ ν(~x) +
M∑
i=1

√
λifi(~x)ξi(θ), (3)

where ν is the mean value of the random field, ~ξ is a vector
of mutually uncorrelated orthonormal random variables, fi
are orthonormal eigenfunctions and λi are eigenvalues. The
eigenfunctions and the eigenvalues that appear in the KLE are
obtained by solving the Fredholm integral equation:∫

Dc

Cov(~x, ~y)fi(~x)d~x = λifi(~y), (4)

where Cov is the covariance function. By applying the Galerkin
method the Fredholm integral equation results in a generalized
eigenvalue problem,

Af = λBf , (5)

with matrices A,B ∈ Rn×n and eigenvector f ∈ Rn. Matrix
A is symmetric and B is a diagonal matrix. The number of
degrees of freedom is denoted as n. In this paper we assume
a Gaussian covariance function given as,

Cov(~x, ~y) = σ2 exp

(
−
||~x− ~y||2l2

d2

)
. (6)

where σ and d are the standard deviation and the correlation
length of the random field, respectively.

IV. FIELD QUALITY

The radial component of the magnetic flux density is ex-
panded as

Br(r0, φ) =

∞∑
k=1

(Bk(r0) sin(kφ) +Ak(r0) cos(kφ)), (7)

where k is the pole-pair number, r0 and φ are the radius of the
reference circle, located at the center of the magnet, and the
angle variable, respectively. The components Bk and Ak are
known as the normal and the skew component, respectively.
By using the complex-valued Fourier coefficients ck of the
magnetic vector potential Az , evaluated at the reference circle,
the multipole coefficients are computed as follows:

Bk = −Re{ck}
k

r0
, Ak = −Im{ck}

k

r0
. (8)

Multipole Coefficients Mean / T Std / T
B1 5.459 10−2 3.057 10−4

B3 −7.312 10−5 6.506 10−7

B5 4.577 10−6 6.557 10−8

TABLE I: Statistics for the multipole coefficients
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Fig. 2: The standard deviation of the 3rd multipole coefficient

In this paper the mean value and the standard deviation of the
normal component Bk are computed by using the stochastic
collocation method [6].

V. RESULTS

The Fredholm integral equation (4) is solved for σ = 5,
d = 0.5m. The number of turns in the switching coils is
Nt1,2 = 56 and the current is I1,2 = 57A. The steerer
coil is not excited within this computations. The mean value
of the random reluctivity is modeled as constant ν = 795
H−1m and the random variables are uniformly distributed as
ξi ∼ U(−

√
3,
√
3). Both, the air region and the coil region

have the reluctivity of vacuum, νe = νj = µ−10 . Table I shows
the mean value and the standard deviation of the first, third
and the fifth normal multipole coefficients. In Fig. (2) the
standard deviation of the 3rd normal multipole, also known
as sextopole, coefficient is depicted for varying correlation
length d of the random field. The sextopole coefficient is
most sensitive to uncertainties with a correlation length of
approximately d = 0.3m. The standard deviation is decreasing
for d > 0.3m.
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